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Summary

1. After the dramatic eutrophication-induced decline of intertidal seagrasses in the 1970s, the

Wadden Sea has shown diverging developments. In the northern Wadden Sea, seagrass beds

have expanded and become denser, while in the southern Wadden Sea, only small beds with

low shoot densities are found. A lack of documentation of historical distributions hampers

conservation management. Yet, the recovery in the northern Wadden Sea provides opportu-

nity to construct robust habitat suitability models to support management.

2. We tuned habitat distribution models based on 17 years of seagrass surveys in the north-

ern Wadden Sea and high-resolution hydrodynamics and geomorphology for the entire Wad-

den Sea using five machine learning approaches. To obtain geographically transferable

models, hyperparameters were tuned on the basis of prediction accuracy assessed by non-ran-

dom, spatial cross-validation. The spatial cross-validation methodology was combined with a

consensus modelling approach.

3. The predicted suitability scores correlated amongst each other and with the hold-out obser-

vations in the training area indicating that the models converged and were transferable across

space. Prediction accuracy was improved by averaging the predictions of the best models.

4. We graphically examined the relationship between the consensus suitability score and

independent presence-only data from outside the training area using the area-adjusted sea-

grass frequency per suitability class (continuous Boyce index). The Boyce index was positively

correlated with the suitability score indicating the adequacy of the prediction methodology.

5. We used the plot of the continuous Boyce index against habitat suitability score to demar-

cate three habitat classes – unsuitable, marginal and suitable – for the entire international Wad-

den Sea. This information is valuable for habitat conservation and restoration management.

6. Divergence between predicted suitability and actual distributions from the recent past indi-

cates that unaccounted factors limit seagrass development in the southern Wadden Sea.

7. Synthesis and applications. Our methodology and data enabled us to produce a robust and

validated consensus habitat suitability model. We identified highly suitable areas where inter-

tidal seagrass meadows may establish and persist. Our work provides scientific underpinning

for effective conservation planning in a dynamic landscape and sets monitoring priorities.
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Introduction

Seagrass beds are highly valued for their ecosystem ser-

vices (Costanza et al. 1997; Orth et al. 2006) related to

nutrient cycling and provisioning resources and habitat

for other species (Beck et al. 2001). On a global scale, sea-

grass distributions have drastically declined leaving behind

unvegetated but potentially suitable habitat (Waycott

et al. 2009). The effectiveness of seagrass conservation

management such as safeguarding suitable habitats is

often hampered by the lack of systematic documentation

of historical seagrass distributions and by changes in envi-

ronmental conditions in space or time. Another complica-

tion is that seagrass distributions in energetic

environments like intertidal zones show local extinction–
colonization dynamics which necessitates identification

and protection of vegetated and suitable unvegetated

habitat (Valle et al. 2013; Suykerbuyk et al. 2016). To

identify habitat where populations are likely to establish

and persist, habitat distribution models (HDMs) can be

used (Elith & Leathwick 2009; Guisan et al. 2013).

To obtain predictions that are accurate beyond the

training area, HDMs need to be generalizable or transfer-

able between geographical areas (Wenger & Olden 2012).

However, spatial and temporal heterogeneity in ecological

relationships and environmental conditions may limit

transferability leading to biased predictions (Randin et al.

2006; Bahn & McGill 2013). For instance, associations

between variables may exist in a narrow geographical

range but may not hold under a wider range or vice versa.

Accuracy assessment and model selection on the basis of

non-random cross-validation has been proposed to reduce

the risk of overfitting and to improve transferability

through space and time (Ara�ujo et al. 2005; Wenger &

Olden 2012). In the case of the spatial variant of this

cross-validation method, data are split into geographical

subsets that are more distinct than random subsets. The

idea behind this method is that the validation sets differ

from training sets similarly as the area for which predic-

tions are required. Hence, this method yields more trans-

ferable models and thus more accurate predictions under

new conditions than models that are tuned by random

cross-validation (Wenger & Olden 2012).

Another complication may stem from prediction vari-

ability between modelling techniques (Elith & Leathwick

2009). This has led to the common practice of using mul-

tiple models followed by assessment and analysis of the

agreement between predictions (Segurado & Ara�ujo 2004;

Thuiller 2004). Furthermore, various studies have shown

that ensemble forecasting – forecasting by pooling of indi-

vidual model predictions – may increase accuracy (e.g.

Ara�ujo & New 2007; Marmion et al. 2009). In a similar

vein as Wenger et al. (2013), we propose combining both

methods by pooling predictions of models that are tuned

on the basis of transferability and to take into account

the possibility that models may perform differently across

geographical subsets of the data. This methodology thus

combines the benefits of optimizing transferability of

models by non-random cross-validation while improving

accuracy by pooling predictions and the construction of a

consensus forecast.

Before further detailing the modelling approach, we

present a conceptual model describing how desiccation,

hydrodynamics and geomorphology control the distribu-

tions of intertidal Z. noltii and Z. marina (Fig. 1) in the

Wadden Sea (Den Hartog & Polderman 1975). In contrast

to subtidal seagrass species, Z. noltii and Z. marina pos-

sess adaptations to reduce water tissue loss and maintain

high rates of photosynthesis during emersion, which

allows them to occur in intertidal zones. Nevertheless,

upper intertidal distributions are limited by desiccation

stress resulting from long-lasting aerial exposure (Leusch-

ner, Landwehr & Mehlig 1998; van Katwijk et al. 2000;

de Jong, Katwijk & Brinkman 2005; Shafer, Sherman &

Wyllie-Echeverria 2007).

Hydrodynamic stress limits the distribution of seagrass

by preventing establishment and damaging and uprooting

of plants (Fonseca & Bell 1998; van Katwijk et al. 2000;

Koch 2001). In intertidal systems, hydrodynamic stress

increases along the depth gradient towards the subtidal

area. We model seagrass distributions under the assump-

tion that the hydrodynamic factors are exogenous, inde-

pendent forcing factors. However, when discussing the

modelling results, we keep in mind that seagrass meadows

locally affect hydrodynamics and that feedbacks may exist

(Fonseca & Bell 1998; Koch 2001; van der Heide et al.

2007; Folmer et al. 2012).

The geomorphology and sediment properties of soft

sediment intertidal systems are controlled by hydrody-

namics. Steep slopes occur at and near gullies where tidal

currents are strong while shallow slopes occur in calmer

areas. Therefore, the slope can be used as a proxy for past

and present hydrodynamics and thus be used to predict

seagrass distributions. Seagrass is expected to occur in

areas with shallow slopes only; it is not assumed that the

Fig. 1. Zostera noltii and Zostera marina growing on the mudflats

in the Schleswig–Holstein area in the German Wadden Sea.
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slope per se affects seagrass. The median grain size and

mud content of the sediment can also be used as a proxy

for hydrodynamic conditions. In addition, the sediment

properties themselves may affect seagrass growth and

occurrence and, vice versa, seagrass may affect sediment

properties by promoting accretion of fine particles (Koch

2001; Bos et al. 2007; Folmer et al. 2012). However, in

the Wadden Sea, the accumulated fine sediments are

released during winter when the above-ground parts of

intertidal seagrass meadows dissipate (Bos et al. 2007).

Therefore, the sediment properties are modelled as exoge-

nous factors.

Zostera plants tolerate a wide salinity range. Den

Hartog (1970) reports a range of 5–42 psu and Nejrup &

Pedersen (2008) report optimal growth of Z. marina

between 10 and 35 psu. Even under narrower ranges,

nearly the entire Wadden Sea is within the tolerable

range. To avoid the risk of overfitting due to spurious

correlations, salinity is not included as a predictor.

Both Zostera species can have annual and perennial life

cycles in the Wadden Sea. However, the smaller Z. noltii

often survives winter with rhizomes, while Z. marina lar-

gely recruits from seed each year. The predominantly sub-

tidal, perennial morph of Z. marina went extinct during

the 1930s and never returned in this area (Den Hartog

1987). Eutrophication was an important factor causing

declines of intertidal Z. noltii and Z. marina populations

between the 1970s and 1990s (Philippart & Dijkema 1995;

van Katwijk et al. 2010; Dolch, Buschbaum & Reise

2013). It led to higher densities of epiphytes growing on

seagrass leaves (Philippart & Dijkema 1995; Dolch,

Buschbaum & Reise 2013) and increased growth of green

algae that smothered seagrass beds (Reise, Herre & Sturm

1989). The nutrient loads may have also affected seagrass

physiology because the metabolism of seagrasses is

adapted to low nutrient conditions (Burkholder, Tomasko

& Touchette 2007).

Data from disparate seagrass surveys in the Wadden

Sea are available in grey and formally published litera-

ture. Dijkema, van Thienen & van Beek (1989) compiled

data from various intertidal surveys between the 1950s

and 1970s (see Appendix S1, Supporting information).

Because declines probably already took place before this

period, our knowledge of past distributions remains lim-

ited. It is clear, however, that seagrass extents in the

southern Wadden Sea have remained low which has trig-

gered substantial conservation concern and restoration

efforts in the Dutch Wadden Sea. Up until now, restora-

tion efforts have failed to establish new persisting seagrass

meadows. In the northern Wadden Sea, however, seagrass

extents have increased and the total surface area is cur-

rently larger than in the 1930s (Reise & Kohlus 2008;

Dolch, Buschbaum & Reise 2013).

The conceptual model illustrates that nonlinear rela-

tionships and interactions between variables occur which

may give rise to complex and spatiotemporally variable

response surfaces. Skewed distributions and nonlinear

relationships are more accurately described by machine

learning approaches than by GLMs or climate envelopes

for example (Barry & Elith 2006). Because our objective

is to capture complex response surfaces to predict habitat

suitability, we apply Random Forests, Gradient Boosting

Machines, Multivariate Adaptive Regression Splines, Sup-

port Vector Machines and Generalized Additive Models

(Hastie, Tibshirani & Friedman 2009; Kuhn & Johnson

2013). These approaches have performed well in other

species and habitat distribution modelling studies (Barry

& Elith 2006; Drake, Randin & Guisan 2006; Leathwick,

Elith & Hastie 2006; Prasad, Iverson & Liaw 2006; Elith,

Leathwick & Hastie 2008).

The choice of the modelling framework for developing

HDMs depends on the aim of the study (Guisan &

Thuiller 2005; Elith & Leathwick 2009; Dormann et al.

2012). When, for example, HDMs are developed to

improve understanding of species’ responses to environ-

mental variables, statistical approaches such as GLM(M)s

are often selected because relationships between responses

and predictors are straightforward to analyse. However,

failure to account for possible spatial autocorrelation in

the response variable may lead to biased parameter esti-

mates and influence statistical inference (Dormann et al.

2007; Folmer, Olff & Piersma 2012). When HDMs are

developed to predict (potential) distributions of species’

occurrences across geographical areas (as in our case),

machine learning approaches are often preferred due to

their predictive accuracy (Barry & Elith 2006; McCue,

McGrath & Wiersma 2014). Furthermore, when models

are tuned on the basis of transferability, they are not only

guarded against overfitting, which may occur when there

is heterogeneity in ecological relationships, but also

against bias resulting from spatial autocorrelation (Wen-

ger & Olden 2012). A disadvantage of many machine

learning algorithms is that interpretation can be difficult

because relationships between response and predictor vari-

ables are difficult to analyse which is why they are some-

times called ‘black boxes’. However, for some machine

learning algorithms, there are approaches which may help

to gain insight into (marginal) dependencies between vari-

ables (Elith, Leathwick & Hastie 2008; Hastie, Tibshirani

& Friedman 2009).

The main purpose of this paper was to develop, test

and apply the ‘transferability-consensus’ approach to

identify potential seagrass habitat in the Wadden Sea.

Because the models will be used for geographical extrapo-

lation, they are tuned on the basis of transferability. We

use data from extensive seagrass surveys in the northern

Wadden Sea where the extents are currently above the

levels in the 1930s (Reise & Kohlus 2008; Dolch, Busch-

baum & Reise 2013). We use predictor variables based on

high-resolution hydrodynamic modelling outcomes, and

geomorphology and sediment properties on the scale of

the entire Wadden Sea. This combination of data provides

ideal opportunities to develop robust HDMs to identify

areas potentially suited for seagrass in the entire Wadden
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Sea. After showing that the ‘transferability-consensus’

approach leads to improved predictions, we use the con-

sensus predictions to map intertidal seagrass habitats for

the Wadden Sea at large.

Materials and methods

STUDY AREA AND SPECIES

The Wadden Sea – located in the south-eastern coastal zone of

the North Sea bordering Denmark, Germany and the Nether-

lands – is the largest coherent system of intertidal flats in the

temperate zones of the world (Fig. 2). It spans a distance of

nearly 500 km and the area of intertidal flats is about

5000 km2. It was placed on UNESCO’s World Heritage list

because of its ‘universally outstanding natural values’. It con-

sists of intertidal flats, shallow subtidal flats, drainage gullies

and deeper inlets and channels. Barrier islands are found in

the entire Wadden Sea except in the central Wadden Sea. Tidal

amplitudes range between 1�5 and 3�0 m in the north-eastern

and south-western Wadden Sea and exceed 3�0 m in the central

part. Tidal currents and exposure to waves strongly differ

between regions due to differences in tidal range, geomorphol-

ogy, fetch and the occurrence of barrier islands. The intertidal

flats consist mostly of sand mixed with fine-grained muddy sed-

iments; the fractions of fine-grained particles increase towards

the shores.

Fig. 2. The Wadden Sea with all known intertidal seagrass occurrences. There are regional differences in the monitoring intensity and

methodology underlying the presented seagrass data. The seagrass beds (in red) are drawn larger than their actual sizes to increase visi-

bility of small seagrass beds in the Netherlands and Lower Saxony (LS). The number ranges (i.e. 0–1 m, 1–2 m, 2–3, 3–4 m) separated

by dashed lines denote the tidal ranges at spring tide (redrawn from Wiersma et al. 2009). The geographical extent ranges between

52°570 – 55°370 north and 4°440 – 8°120 east.

© 2016 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society,

Journal of Applied Ecology

4 E. O. Folmer et al.



DATA

Seagrass areal extents

We used intertidal seagrass distribution data from Schleswig–Hol-

stein for the years 1995–2011 (Reise & Kohlus 2008; Dolch,

Buschbaum & Reise 2013). Each year, between June and Septem-

ber when seagrass attains its seasonal maximum cover, three sur-

veyors in a four-seated Cessna aircraft flying during low tide at

heights between 300 and 500 m surveyed intertidal flats for sea-

grass. Each surveyor mapped seagrass beds on paper with pre-

printed satellite images showing the contours of land, sea and

intertidal flats. Then, a synthesis of all three maps was created

and the seagrass mapping results were digitized as vector files in

a GIS. Since 2007, yearly ground-truth field surveys were per-

formed in July and August; they showed that a minimum cover

density of about 20% is required to detect seagrass from the air

with satisfying reliability (Dolch, Buschbaum & Reise 2013).

The response variable seagrass prevalence (p) was constructed

by summarizing the yearly contours in a single raster grid with

cell size of 200 9 200 m covering the intertidal area of Sch-

leswig–Holstein (Fig. 3, n = 39 645 grid cells). The origin and res-

olution of the raster is identical to the raster with the predictor

variables described below. Prevalence is the fraction of the time

span of 17 years that the represented mudflat patch was covered

with seagrass (0: never covered, 1: always covered) (Fig. 3a). The

models were tuned on log-transformed prevalence. The log trans-

formation was used to reduce the relative difference between high

prevalence values while maintaining relatively large differences

between the lower prevalence values. To avoid taking the log of

zero, we added half of the smallest non-zero value to all values

(0�5 9 (1/17) � 0�03).
We furthermore compiled a spatial seagrass data set (i.e. a vec-

tor file) of all known intertidal seagrass occurrences in Denmark,

Lower Saxony and the Netherlands between the 1970s and 2015

to investigate the quality of the model predictions outside Sch-

leswig–Holstein. Due to differences in methodology and timing of

the surveys, these data sets are distinct and they were not used

for model tuning; they were used as presence-only data for vali-

dation (Boyce et al. 2002) (details of these data sets are described

in Appendix S1 and included in Fig. 2).

Predictor variables

Predictor variables summarizing the hydrodynamics were

obtained from the General Estuarine Transport Model (GETM,

Burchard & Bolding 2002), which is designed for coastal ocean

simulations with drying and flooding of intertidal flats. GETM

is a three-dimensional baroclinic open source model with

hydrostatic and Boussinesq assumptions. In GETM, the three-

dimensional hydrostatic momentum equations are solved on a

staggered C-grid, which for the present application is horizon-

tally Cartesian. To calculate vertical turbulent fluxes, GETM

uses turbulence closure models from the General Ocean Turbu-

lence Model (GOTM, Umlauf & Burchard 2003). In the pre-

sent study, a k-epsilon model is used with an algebraic second

moment closure. To vertically discretize the model equations,

the water column is resolved with 25 adaptive terrain-following

depth layers. A bathymetry with resolution 200 m was con-

structed on the basis of data made available by Rijkswaterstaat

for the Dutch Wadden Sea (resolution 50 m), the project

AufMod (resolution 50–200 m) for the German Wadden Sea

and the Danish Maritime Safety Administration (resolution

200 m) for Danish waters. The numerical set-up that is based

on this 200 9 200 m topography is the end member of a hier-

archy of four nested models covering the North Atlantic, the

North Sea, and the southern North Sea (Gr€awe et al. 2015).

The bottom layer in the model has a maximum thickness of

0�3 m to resolve properly the bottom boundary layer. The for-

ward integration of the model is done with a time step of

40 s. Thus, every 40 s, the current velocity, temperature, salin-

ity and turbulent quantities are prognostically computed.

Atmospheric forcing is taken from the operational model of

the German Weather Service (DWD) with a spatial resolution of

7 km. Atmospheric fields, which include precipitation, are pro-

vided every 3 h. In between, GETM uses linear interpolation.

The model is further forced by freshwater run-off from rivers.

For all rivers, observations at daily or finer resolutions are avail-

able. The Dutch run-off data were provided by the Royal Nether-

lands Institute for Sea Research and Rijkswaterstaat (temporal

resolution 15 min), the data for the East Frisian Wadden Sea by

the German Federal Institute of Hydrology (temporal resolution

24 h) and those for the North Frisian and the Danish Wadden

Sea by Schleswig-Holstein’s Government-Owned Company for

Coastal Protection, National Parks and Ocean Protection (tempo-

ral resolution 24 h). The run-off data (m3 s�1) with a temporal

resolution of 24 h were linearly interpolated to obtain run-off

data at the 15 min resolution. For each 40 s time step, the run-

off (m3 s�1 at the 15 min interval) is multiplied by 40 s to obtain

run-off volumes (m3) on the resolution of 40 s. The model was

run for the period 2008–2011. The year 2008 was not included in

the computation of the summary statistics since it was considered

as spin up for the hydrodynamics. For a detailed description of

the model set-up and performance, we refer to Duran-Matute

et al. (2014). The model output was used to obtain estimates of

mean exposure time (i.e. the mean fraction of time that the

seabed is exposed to the air, exptime) and mean bottom shear

stress due to currents (s, taub) over the period 2009–2011.

The bathymetry was used to calculate the slope of each grid

cell with the R package ‘raster’ (Hijmans 2013); the algorithms

used are appropriate for smooth surfaces. We used the values of

four neighbouring cells to calculate the slope.

High-resolution sediment data (mud: fraction sediment <63 lm;

and mgs: median grain size) covering the Dutch and German

Wadden Sea, developed within the AufMod project, were pro-

vided by the German Federal Maritime and Hydrographic

Agency. Missing data for Denmark were imputed with the K-

nearest neighbour model. This approach computes the new sam-

ple by taking the average value of the samples in the complete set

that are closest to it; K was set to 5. Prior to imputation, the pre-

dictor variables were transformed by means of the Box–Cox fam-

ily of power transformations (Venables & Ripley 2002). To

impute mgs and mud for the Danish part of the Wadden Sea, the

variables slope, taub, taub.Q75 (75th percentile of bottom shear

stress), exptime, dshore (shortest distance to shoreline) were used.

HABITAT DISTRIBUTION MODELL ING

Training

Habitat distribution models (HDMs) were developed by relat-

ing log-transformed seagrass prevalence to the five Box–Cox

© 2016 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society,
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transformed environmental predictor variables, that is

log(p+e) = f(slope, exptime, taub, mud, mgs). Because there was

no reason to assume that one particular modelling approach

would perform best, we used five approaches: Random Forests

(RF), Gradient Boosting Machines (GBM), Multivariate Adap-

tive Regression Splines (MARS), Support Vector Machines

(SVM) and Generalized Additive Models (GAM). The mod-

elling principles are described in Appendix S2.

We tuned and compared the predictive capacity of the

HDMs by means of non-random, spatial cross-validation. In a

similar vein to Ara�ujo et al. (2005) and Wenger & Olden

(2012), we split the data into seven regionally distinct subsets

which are more independent than random subsets. We used

the borders of the tidal basins of the Wadden Sea (Folmer

et al. 2014) to delineate the seven regions. Observations from

small adjacent basins were combined so that the subsets con-

tained roughly equal numbers of data points while ensuring

that all subsets contained non-zero observations (Fig. 3b and

Table 1). To assess possible bias caused by ignoring spatial

heterogeneity, we also tuned the models by conventional ran-

dom cross-validation where the data set was randomly split

into 10 equally sized, non-overlapping, stratified subsets.

Stratification across bins of the response variable ensured that

the probability distributions of the response variable between

subsets were similar (Kuhn & Johnson 2013).

Models were fitted to data remaining after holding out one

subset; the procedure was repeated for each combination of

holdout set and remaining data. A grid search was used to

tune across model-specific hyperparameters (described in

Appendix S2) by minimizing root-mean-squared error (RMSE)

between predictions and observations of the holdout sets.

Consensus habitat suitability within and outside the

training area

Within training area. The non-random cross-validation procedure

using five models m resulted in five sets of predictions per hold-

out set which were used to compute the consensus predictions.

For each grid cell i in the holdout sets, the consensus suitability

score was computed by taking the average of the five predicted

values, Smi, weighted by the inverse of the individual variances,

(a) (b)

Fig. 3. The Schleswig–Holstein training

area used for developing habitat distribu-

tion models. (a) Seagrass prevalence in the

period 1995–2011. (b) The seven tidal

basins or sets of tidal basins used to split

the data for spatial cross-validation are

indicated by different colours.
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that is �Si ¼
Pm¼5

m¼1
wmiSmi

Pm¼5

m¼1
wmi

and wmi = r�2
mi . The transferability of the

five models and that of the consensus predictions to each of the

holdout sets were compared by the RMSE.

Outside training area. The consensus habitat suitability for the

entire Wadden Sea was computed on the basis of five models fit-

ted to seven holdout sets in the training area. This resulted in 35

predicted suitability scores per grid cell. The consensus suitability

score was computed similarly as above except that in this case

there were 35 predicted scores to average. We also computed the

ensemble spread; it is similar to the standard variance of the pre-

dictions except that it is based on the weighted average,

�ri ¼
Pm¼35

m¼1 wmðSim � �SiÞ2
Pm¼35

m¼1 wim

Presence-only validation and classification

The presence-only data from the Netherlands, Lower Saxony and

Denmark were used to examine the consensus predictions outside

the training area of Schleswig–Holstein. Boyce et al. (2002) pre-

sent an index to validate modelled suitabilities (in their case ‘re-

source selection functions’) with out-of-sample, presence-only

data. The index is the frequency of presence per suitability class

divided by the area (or number of grid cells) of that class. We

used an improved version of the index – labelled ‘continuous

Boyce index’ – where rolling means of the habitat suitability

score (HSS) are used instead of fixed classes (Hirzel et al. 2006).

We constructed a plot of the index against the rolling means of

HSS and used it to set boundaries between habitat classes. If the

index was less than one, the habitat was classified ‘unsuitable’

because there were fewer occurrences than expected if the sea-

grass observations were randomly distributed in space. The sec-

ond class is the ‘marginal’ class where the index is greater than

one but substantially lower than the third ‘suitable’ class (Hirzel

et al. 2006). The value of the HSS that separates the marginal

and suitable class was chosen on the basis of the shape of the

curve.

Data management, preparation and analysis were done with R

(www.r-project.org). The R package caret (Kuhn 2014) was used

for transformations, imputation and tuning.

Results

TRANSFERABIL ITY WITHIN THE TRAINING AREA

None of the five models predicted the observations best in

each of the seven subsets. Furthermore, the differences in

transferability between the models are relatively small

(Table 1, see Appendix S3 for parameters). SVM scored

best (lowest RMSE, highest transferability) three times,

MARS three times (of which two ties), GBM tied twice,

and RF and GAM tied once. The average RMSE of

MARS was lowest followed by GBM, SVM, GAM and

RF. The average transferability of the consensus model

equalled the transferability of the MARS model. Further-

more, the RMSEs of the consensus predictions were close

to the best predicting models for holdout sets 1–6; for

holdout set 7, it was 39% higher.

The average RMSEs based on conventional random

cross-validation were substantially lower than the average

RMSEs based on non-random cross-validation. RF espe-

cially showed poor transferability, while its average

RMSE was lowest in the case of random cross-validation.

HABITAT SUITABIL ITY WITHIN THE TRAINING AREA

The five sets of predictions correspond well with each

other and with the observed seagrass prevalences (Fig. 4).

The consensus model correctly identifies all locations

where seagrass occurred (no false negatives) and it rarely

predicts high suitability where no seagrass has been

observed. The mapped residuals (Fig. 4: bottom row,

third panel) visualize the differences between consensus

predictions and observations. The figure shows that the

consensus suitability scores tend to be lower than the

observed values at locations where the prevalence is high

(i.e. underprediction of high values, red areas in the last

panel of Fig. 4). Overall, the consensus predictions fit the

observations well, and in the following section, an ensem-

ble of 35 models based on the entire training area will be

used to predict habitat suitability outside Schleswig–Hol-

stein.

Table 1. Transferability assessment of the best tuned models (one for each modelling framework) on the basis of non-random cross-vali-

dation for the seven spatial subsets within the training area of Schleswig–Holstein. RMSEs are given for RF, GBM, MARS, SVM,

GAM predictions and for the consensus prediction (CONS). The row RMSE (random CV) gives the average RMSE of the models that

were tuned by conventional random cross-validation

Holdout ncells RF GBM MARS SVM GAM CONS

1 3609 0�93 0�83 0�72 0�85 0�92 0�80
2 5328 0�77 0�73 0�73 0�78 0�76 0�73
3 4516 0�81 0�70 0�68 0�65 0�73 0�68
4 5220 1�16 1�16 1�18 1�34 1�20 1�19
5 7094 1�13 1�09 1�09 1�25 1�09 1�11
6 3236 0�55 0�52 0�53 0�46 0�56 0�49
7 10 642 0�59 0�55 0�53 0�36 0�62 0�50
RMSE (non-random CV) 0�84 0�79 0�78 0�79 0�83 0�78
RMSE (random CV) 0�59 0�64 0�75 0�74 0�76
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Fig. 4. Habitat suitability scores within the training area of Schleswig–Holstein by RF, GBM, MARS, SVM, GAM. The predictions for

each of the spatial subsets are based on a model-tuning procedure where the data of the area for which predictions were made were held

out. OBS is the log-transformed prevalence and CONS the prediction by the consensus model. RES are the consensus model residuals

(RES = OBS – CONS).
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HABITAT SUITABIL ITY AND CLASSIF ICATION OF THE

ENTIRE WADDEN SEA

The area-adjusted frequency of the presence of seagrass

(continuous Boyce index on the basis of the presence-only

data outside the training area) increases with HSS

(Fig. 5). This means that the probability of observing sea-

grass clearly increases when predicted habitat suitability

increases. Habitat is unsuitable when the continuous

Boyce index is smaller than 1 which corresponds to a

HSS of �3�16; marginal habitat is defined as habitat with

a HSS between �3�16 and �2�42, while suitable habitat

has a HSS larger than �2�42 (Fig. 5).

The ensemble spread is small compared to the consen-

sus predictions (Figs 6 and 7) which indicates that the

predictions of the 35 models converge. Particularly, the

largest ensemble spread is never >6% of the consensus

prediction.

The locations of the presence-only seagrass observa-

tions correspond well with the predicted suitability and

most locations where seagrass has occurred since the

1970s are classified as suitable (Figs 6 and 7). Some

exceptions occur the eastern part of Lower Saxony where

seagrass presence is observed on marginal and unsuitable

flats (Fig. 6). There are also large extents of suitable flats

where seagrass was not observed during the period con-

sidered. The largest suitable but unoccupied extents occur

in the southern Wadden Sea (Fig. 6). The divergence in

this area is most striking south of the barrier islands.

The percentage area of suitable tidal flats ranges

between 8% in Schleswig–Holstein and 13% in the

Netherlands (Table 2). The percentages of unsuitable and

marginal habitat are of similar magnitude between the

regions.

Discussion

To allow for the recovery of seagrass populations, there is

urgent need for identification of suitable habitat. We

developed a robust consensus habitat suitability model for

intertidal seagrass by combining five HDMs tuned on the

basis of transferability performance. We identified areas

of high suitability in the Wadden Sea where seagrass

meadows may establish and persist. We discuss methodol-

ogy and possible causes of the absence of seagrass mead-

ows in the southern Wadden Sea.

TRANSFERABIL ITY ASSESSMENT AND POOLING

Our study shows substantial differences between the predic-

tion accuracy of models tuned by conventional random

cross-validation and of models tuned by non-random, spa-

tial cross-validation. The former insufficiently took account

of spatial heterogeneity leading to overfitted and poorly

transferable models. In particular, Random Forest showed

high accuracy under random cross-validation but poor

transferability. Note that Wenger & Olden (2012) also

found that Random Forest had high in-sample accuracy

but suffered from poor transferability. Although our study

is limited to analysis of spatial heterogeneity and transfer-

ability, there is no reason to believe that it would be any dif-

ferent for temporal transferability. Our results are in line

with Ara�ujo et al. (2005) and Wenger & Olden (2012).

We furthermore found that none of the five modelling

approaches consistently predicted the holdout observa-

tions best and that the ensemble approach improved accu-

racy and robustness of predictions. The ensemble

approach also provided measures of spread which were

low due to the fact that model predictions converged.

From a management point of view, the ensemble spread

is not of concern because even the largest spreads are

below 6% of the consensus HSS.

HDM DEVELOPMENT WITHIN TRAINING AREA

The consensus predictions were favourable in that all

locations within the training area where the prevalence

was high were correctly identified as suitable habitat. The

observation that most of the suitable habitat in Sch-

leswig–Holstein is occupied is in line with the observation

that the seagrass extent in this area has exceeded the

levels of the 1930s and that the increase has levelled off

over the last years (Dolch, Buschbaum & Reise 2013; T.

Dolch, non-published data).

Fig. 5. Area-adjusted frequency of the

presence of seagrass ‘continuous Boyce

index’ vs. HSS (habitat suitability score)

on the basis of a rolling mean. The vertical

dashed lines show the values of the HSSs

used to classify unsuitable, marginal and

suitable habitat.
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The consensus HDM underpredicted suitability at

locations with high prevalence. There are two main rea-

sons for this. First, regression models capture the vari-

ables that correlate with the phenomenon under study;

they do not capture extremities resulting from random-

ness. Particularly, randomness underlies ‘regression

towards the mean’ (e.g. Kelly et al. 2005). Secondly, sta-

tic regression models do not fully capture dynamic eco-

logical processes such as reproduction and dispersal

which underlie spatial and temporal autocorrelation in

the data (Guisan & Thuiller 2005). Particularly, our

modelling approach ignores that the development of a

seagrass bed is influenced by local production and reten-

tion of seed and rhizomes and by possible feedbacks

with hydrodynamics (Fonseca & Bell 1998). This means

that the impact of the presence of seagrass in 1 year on

the presence of seagrass in the following year is not cap-

tured. Hence, a relatively frequently occupied location is

likely, but not necessarily, more suitable than an infre-

quently occupied location. For instance, the former

might by chance have been recolonized earlier in the

monitoring period. Models that are tuned on the basis

of transferability are guarded against overfitting in the

case of autocorrelation which increases their applicability

(Wenger & Olden 2012).

PREDICTIONS FOR THE WADDEN SEA,

RECOMMENDATIONS FOR MANAGEMENT AND FUTURE

RESEARCH

Because the predictions for the spatial holdout data sets

within the training area were accurate, the ensemble of

models provided a solid foundation for predicting habitat

suitability outside the training area. The relatively low

prediction variances yielded further confidence in the reli-

ability of the consensus suitability scores. Finally, the

monotonic relationship between the area-adjusted fre-

quency of presence and HSS implies that the predictions

are accurate beyond the training area.

We identified extensive areas of suitable habitat in the

southern Wadden Sea where sustaining meadows had not

been observed in the recent past. It is encouraging that in

the last few years, seagrass plants have established and

persisted on suitable locations, where they had not been

observed before (Appendix S1). Particularly, plants of

Z. noltii and Z. marina were found on tidal flats south of

Fig. 6. Consensus predicted suitability scores, ensemble spread, habitat classes and observed intertidal seagrass in the southern Wadden

Sea. The maps are rotated 12° clockwise.
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Rottumeroog and Rottumerplaat between 2012 and 2015

(Fig. 2, coordinates 4089000, 3385000; B. Ebbinge and M.

Bunskoek pers. comm.) and plants of Z. noltii were found

east of Griend in summer 2015 (coordinates 4007000,

3360000, S. Holthuijsen pers. comm). Given these devel-

opments, it is likely that plants and meadows will

continue to emerge and expand at these and in other, pre-

sently unvegetated, locations. Detailed surveillance moni-

toring in combination with targeted research and

systematic conservation planning may help the protection

of seagrass habitat and the development of seagrass popu-

lations. For instance, it would be useful to know how nat-

ural and anthropogenic conditions at (newly) occupied

locations compare to other suitable locations where sea-

grass meadows are not (yet) developing. For example,

cockle fisheries by means of hand dredging is an activity

that removes standing seagrass plants and possibly pre-

vent establishment. Although cockle dredging is illegal

inside existing seagrass beds, it is currently allowed inside

a major part of the suitable habitat in the Dutch Wadden

Sea (Appendix S4).

Our HDMs performed well, but it is important to note

that they – like any model – incorporate uncertainties.

For instance, possible data errors in the bathymetry will

Fig. 7. Consensus predicted suitability

scores, ensemble spread, habitat classes

and observed intertidal seagrass in the

northern Wadden Sea. The maps are

rotated 12° clockwise.

Table 2. The area (km2) of unsuitable, marginal and suitable sea-

grass habitat and the total area of intertidal flats in the Danish

(DK), Schleswig–Holstein (SH), Lower Saxon (LS) and Dutch

Wadden Sea (NL). The percentage of the total intertidal flat area

is given in parentheses

Region Unsuitable (%) Marginal (%) Suitable (%) Total

DK 223 (49) 180 (39) 56 (12) 460

SH 999 (63) 460 (29) 126 (8) 1585

LS 976 (58) 537 (32) 179 (11) 1692

NL 897 (56) 501 (31) 211 (13) 1609
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cause errors in the modelled hydrodynamics and the sedi-

ment data may contain interpolation errors. These data

errors affect the HDMs. In this context, it is important to

distinguish random error from systematic bias in all

observations. The former case would reduce prediction

accuracy, while the latter case would not change predic-

tions because correlations remain intact. Nevertheless,

hydrodynamic models are currently the only source of

consistent and synoptic data at the relevant spatial and

temporal scales. GETM was set up for the entire Wadden

Sea and simulated the hydrodynamics for a period of

3 years. The model was combined and validated with

observations of different variables and performed ade-

quately (Duran-Matute et al. 2014). Hence, the summary

statistics used in this paper are representative for the true

conditions. The sediment data are also reliable because

the data set was constructed and validated with an exten-

sive set of observations covering large spatial and tempo-

ral scales. Nevertheless, advances in hydrodynamic

simulation and monitoring methodology and their integra-

tion can help to improve the quality of predictor variables

and hence enable more accurate predictions.

Another limitation of our HDMs is that they are based

on hydrodynamical and geomorphological predictors

only. There are other (dynamic) factors of biotic, chemical

and geological nature that we have not accounted for,

that may influence settlement, growth and survival of sea-

grass meadows. For instance, eutrophication may nega-

tively affect seagrass growth via direct negative impact of

nutrients (Burkholder, Tomasko & Touchette 2007).

Eutrophication may also indirectly affect seagrass by stim-

ulating growth of epiphytes on leafs and growth of green

macroalgae which may cover and smother seagrass stands

(Reise, Herre & Sturm 1989; Philippart 1995; Burkholder,

Tomasko & Touchette 2007). Bioturbation caused by, for

example, lugworms Arenicola marina may also hamper

settlement and growth of seagrass (Philippart 1994). On

the other hand, below-surface clay layers from inundated

saltmarshes and polders may provide stable underground

for seagrass roots enabling seagrass to occur at relatively

exposed sites (Reise & Kohlus 2008) while preventing bio-

turbation by lugworms (Philippart 1994).

A comprehensive framework for modelling seagrass

populations requires not only insight into habitat suitabil-

ity but also understanding and quantification of demo-

graphic processes including actual and potential dispersal

between source and sink locations. An interesting chal-

lenge is to further develop the modelling framework and

data collection so that the relationships between habitat

and demographic variables can be taken into account.

Although integration of slow and fast and of exogenous

and endogenous variables is not easy, we expect that this

type of refinement not only improves predictions of habi-

tat suitability, but will also allow for more realistic

metapopulation models which may help to provide insight

into the reasons why seagrass meadows have not estab-

lished on the extensive areas of seemingly suitable habitat

in the southern Wadden Sea. We recommend that the

production and dispersal of seagrass propagules are

included in monitoring programmes so that source–sink
dynamics can be modelled by integrating HDMs, trans-

port models and distribution data.

In conclusion, our consensus HDM identified areas

where seagrass meadows may potentially establish and

persist in the international Wadden Sea. This information

provides managers and ecologists with scientific underpin-

ning to focus on particular areas for conservation,

restoration and further research. Habitat distribution

modelling is a common practice in conservation science

and the number of applications is increasing as a result of

the wide availability of GIS data, models and software.

Although we think that this is a positive development,

our work illustrates that, on a general note, caution

should be taken because inaccurate articulation of the

purpose of modelling and the failure to account for spa-

tial heterogeneity and spatial autocorrelation may lead to

undesired outcomes and biased predictions. Therefore, it

is crucial that scientists and managers collaborate to avoid

misunderstanding and to develop insights and models that

are apt for the problems at hand.
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